
Part IV:MC-based likelihood inference for
discretely-observed diffusions with known constant

diffusivity

I Missing data problems and formal data augmentation (DA)

I DA for discretely-observed diffusions with known constant
diffusion coefficient

I Conditional distribution of the missing data: diffusion bridges

I Likelihood ratios for diffusion bridges, transition density
identities, connections to literature

I An MCMC scheme for parameter estimation

To avoid excessive notation we focus on time-homogeneous
diffusions, although this is only for convenience



We have seen that pseudo-likelihood approaches are typically
inconsistent considering outfill asymptotics. We need consistent
(and hopefully efficient) statistical procedures

We will use the tools we have developed (discretizations, likelihood
ratios on the path space, exact simulation etc) to construct MC
methods for this end

We start by considering a simpler setting: target process has
known constant diffusion coefficient. Without loss of generality, we
take it to be 1. Therefore, we assume observed data
x = (x0, x1, . . . , xn) from (34) at times
t0 = 0 < t1 < · · · < tn = T , where the non-linear drift α(x ; θ)
depends on unknown parameters θ, which we wish to estimate

A lot of the results given in this unit remain true when the
diffusion coefficient is any time function, even in non-elliptic cases



Why known diffusivity?

Our first approach (as it happened in the literature) will be to try
an off-the-shelf computational tool to solve the problem for
diffusions; precisely the DA we have already discussed. In the case
of known diffusivity it turns out that this is possible.

There is still a major challenge in this context, which has to do
with diffusion bridges. We will study this topic in this thematic
unit

Nevertheless, applying the standard DA when diffusion coefficient
is unknown leads to a disaster, and we need to think more
carefully (both for diffusions, and for general DA)



Discretely-observed diffusions as missing data problem

Our problem has a structure very common in many statistical
applications (e.g random effect models, analysis of surveys, inverse
problems)

Inference for the complete dataset which includes both the
observed data x, and the paths in-between observations is rather
straighforward using the continuous-time likelihood approach we
have already seen. Let X c = (Xs , s ∈ [0,T ]) be the complete data.
Then, we have the complete log-likelihood:

log Lc(θ | X c) =

∫ T

0
α∗(Xs , θ)dXs −

1

2

∫ T

0
[α∗α](Xs , θ)ds (40)



A bit more formal

Complete data X c = (x,Xm) = (Xs , s ∈ [0,T ]) according to
probability measure P(x0,T ) which has density w.r.t to a
parameter-independent dominating measure W(x0,T ), whose
logarithm is given in (40)

Nevertheless, X c is not available to us, but only x



(Formal) Bayesian DA for missing data problems

General setup: observed data x, unknown parameters θ

missing data Xm, complete data X c , probability model for
complete data P, with tractable density w.r.t θ-independent
dominating measure W, Lc(θ | X c), which we call complete
likelihood. Without loss of generality we take W to be a
probability measure

Observed likelihood is obtained by integrating out the missing
data, formally

L(θ | x) = EW[Lc(θ | X c) | x] (41)

i.e the expectation is w.r.t to the conditional distribution of Xm

given x under W, and (41) is density w.r.t to the marginal measure
for x under W.

DA is not usually presented in so general terms, see however
[Dembo and Zeitouni, 1986] for similar approach



To see why (41) holds, note that

P[x ∈ A] = EP[1[X o ∈ A]] = EW[1[X o ∈ A]Lc(X o ,Xm)]

= EW[1[X o ∈ A]EW [Lc(X o ,Xm) | X o ]]



We elicit a prior distribution for θ, trying to incorporate reasonable
prior knowledge. Thus, θ is also treated as random variable in a
Bayesian approach. If the priors are relatively weak in the area
where data is most informative, then the analysis would be similar
to a likelihood analysis.

Then, the DA treats (θ,Xm) as two-component random vector,
with joint density (w.r.t to a suitable product - under this
construction -measure)

π(θ,Xm | x) ∝ π(θ)Lc(θ | x,Xm) (42)

Simulate from this distribution; marginal θ draws are from the
observed-data posterior, marginal for Xm allows for full
probabilistic inference for the unobserved data given observations,
integrating out parameter uncertainty



DA and the Gibbs sampler

Construct a Markov chain with π(θ,Ymis |Y ) as its stationary
distribution by iterating

1. simulated from π(θ|X c) ;

2. simulated from π(Xm|x, θ) .

The marginal invariant distribution of θ for this algorithm is
obviously π(θ|x)

However this algorithm requires two simulation steps which are
often impossible in interesting examples.



More typically have to do the more general:

1. Simulate one step from a Markov chain invariant w.r.t
π(θ|X c) (e.g. by a standard MCMC procedure);

2. simulate one step from a Markov chain on the space of
possible missing value sets, with invariant distribution
π(Xm|x, θ).

Close links to EM algorithm, Monte Carlo EM algorithm, Monte
Carlo Maximum Likelihood.



DA for diffusions
Following the above paradigm we readily have π(θ,Xm | x) as the
product of the prior π(θ) and the complete likelihood in (40).

In this context, Xm is the collection of interpolating paths
in-between observed data, P the law of the whole path and W the
Wiener measure

Therefore, we can appeal to the generic algorithm in 125 or its
more usual implementation in 126.

For computer implementation, and again without thinking too
much, we would impute a fine discretization on the missing paths,
say based on M intermediate points. Therefore, an approximating
algorithm works with Xm,M with bias which disappears for
increasing M. M = 0 corresponds to the pseudo-likelihood
approaches we have seen before.

Step 1 of the DA in 126 is rather straightforward
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Conditional distribution of missing data

Considerable sophistication underlies the 2nd step in the algorithm,
when applied to diffusions. It is most clear to understand when
M =∞, and treat finite M as a finite-dimensional approximation
of the distribution on paths

In this context, Xm consists of interpolating paths. By the Markov
property, these are conditionally independent. Therefore, it
suffices to study the path between xi and xi+1 separately. Without
loss of generality we consider the path between x and y for times 0
and T . The path corresponds to a diffusion conditioned on its
end-points, this is what is called a diffusion bridge



Conditioned diffusions: h-transform

We have a diffusion

dXt = α(Xt)dt + dBt

with (say) X0 = x , and wish to consider its dynamics conditioned
on the event that XT = y .

It still Markov, and the theory of h-transforms, see for example
Chapter IV.39 [Rogers and Williams, 2000], allows us to derive its
SDE. Let pt(u, v) be the transition density, and recall that for v
fixed as a function of u it satisfies the KBE (26). Let ṗ and p′

denote respectively derivatives w.r.t t and u.



The conditioned diffusion X (use the same letter for economy)
satisfies an SDE

dXt = (α(Xt) +∇ log pT−t(Xt , y)) dt + dBt , 0 ≤ t ≤ T , (43)

where B is not the same BM as the one driving the unconditioned
process. Note the behaviour of the drift near T (intuition)



h-transform proof (1-d for simplicity of notation)

p and in particular p′ are badly behaved for t near to T . However
it is enough to consider the dynamics of Xt up to some time T − ε
for sufficiently small ε. The argument is based on a decomposition
of the law of the conditioned path.

Let P(T ,x ,y)
T−ε denote the conditioned probability measure up to time

T − ε. Then note that:

P(T ,x ,y)
T−ε = P(T−ε,x ,u)

T−ε ⊗ p(u | x , y)du

=
pT−ε(x , u)pε(u, y)

pT (x , y)
du ⊗ P(T−ε,x ,u)

T−ε

=
pε(XT−ε, y)

pT (x , y)
P(T−ε,x)
T−ε

(44)



dP(T ,x ,y)
T−ε

dW(T−ε,x)
T−ε

(X[0,T−ε]) = G (X[0,T−ε])×
pε(XT−ε, y)

pT (x , y)
(45)

where G is the standard Girsanov between the unconditioned
measures.

We aim to prove that the diffusion bridge has this Radon-Nikodym
derivative with respect to Wiener measure.



h-transform proof

We can define a Girsanov formula for X in the usual way. In the
sequel, the arguments of p and p′ is throughout (T − s,Xs , y)

log G (X ) =∫ T−ε

0

(
α(Xs) +

p′

p

)
dXs −

1

2

∫ T−ε

0

(
α(Xs) +

p′

p

)2

ds

= log G (X ) +

∫ T−ε

0

p′

p
dXs −

∫ T−ε

0

(
α(Xs)

p′

p
+

1

2

(
p′

p

)2
)

ds



To complete the proof we need to show that log
p(ε,XT−ε,y)
p(T ,x ,y) equals

the last 3 terms in the expression.

We will use Itô in conjunction with KBE (26)



In the sequel, the arguments of p and p′ is throughout
(T − s,Xs , y). Yt = log p(T − t,Xt , y) then

dYt = − ṗ

p
dt +

p′

p
dXt +

(p′′p − p′2)

2p2
dt

so that

YT−ε − Y0 = log pε(XT−ε, y)− log pT (x , y)

=

∫ T−ε

0

p′

p
dXs −

∫ T−ε

0

(
ṗ

p
− (p′′p − p′2)

2p2

)
ds

=

∫ T−ε

0

p′

p
dXs −

∫ T−ε

0

(
α(Xs)

p′

p
+

1

2

(
p′

p

)2
)

ds



Remark and warning

The argument based on (45) does not imply that RHS is the

density of P(T ,x ,y)
T w.r.t W(T−ε,x)

T . It does, of course, for P(T ,x ,y)
T−ε

and W(T−ε,x)
T−ε .

In the limit ε→ 0, P(T ,x ,y)
T concentrates all its mass on a path

space which has 0 mass under W(T−ε,x)
T . In fact, the RHS converes

W(T−ε,x)
T -a.s to 0.

We will revisit this point when trying to identify measures that are

a.c w.r.t P(T ,x ,y)
T in that limit.



Conditioned diffusion dynamics

Therefore, we have proved that the diffusion process conditioned
on its end-points X0 = x ,XT = y follows a time in-homogeneous
diffusion with SDE

dXs = b̃(s,Xs) ds + dBs , s ∈ [0,T ] ,X0 = x ;

b̃(s, u) = b(s, u) + ∇u log ps,T (u, y) (46)

Therefore we have a neat probabilistic description of the
distribution of the missing data in the DA for diffusions, i.e we
have characterised the distribution from which we should sample in
Step 2 of 126. Is it helpful though?



The SDE of the conditioned process is intractable due to the
presence of the transition density. Note that for linear SDEs with
additive noise, the transition density is Gaussian, its logarithm
quadratic, thus (46) a tractable linear SDE.

It is worth verifying that the Brownian bridge SDE (30) is the
special case of (46) when b = 0.

Note that the intractability of (46) is even more fundamental from
the intractability of the discrete-time dynamics of typical SDEs:
here we do not even know the coefficients.

So, what can we do for carrying out the imputation step in DA for
diffusions? This also has generated active and interesting research



First solution: Exact simulation of diffusion bridges

This is in fact a perfect solution, only compromised by the fact
that the EA we presented earlier is not applicable for every
diffusion, but requires certain assumptions on the coefficients.

EA for diffusion bridges is in fact even easier than for the
unconditioned process



Trivial for the EA: instead of simulating last point, take ωt = y
and proceed as in the unconditional case in the algorithm in 93
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It turns out that if EA can be applied, much more intelligent DA
schemes can be devised, which go in different direction.

But at least, in this context it is easy to obtain a fine skeleton

What about SDEs for which EA cannot be applied (this is
especially for multi-d case)? Ideas?



Importance sampling for conditioned diffusions

The idea is to propose from a tractable diffusion measure which
is absolutely continuous w.r.t P(T ,x ,y), with tractable likelihood
ratio. In the context of MC integration, the samples should be
then weighted by the LR for computing expectations.

In the context of DA, such samples can be used within an
independence MH algorithm, whereby we propose candidates from
this measure, and accept them with the appropriate probability



Lessons learnt from representation (46)

I the local characteristics of the unconditioned and
conditioned processes are the same

I the drift of the conditioned process includes an extra term
which forces the process to hit y at time T

I (46) is typically intractable since the drift is expressed in
terms of the transition density



The main argument

Let, as before, P(T ,x) be the law of the diffusion X on [0,T ] with
X0 = u, W(T ,x) denote the Wiener law, P(T ,x ,y) and W(T ,x ,y)

denote the laws of the corresponding diffusion bridges conditioned
on XT = y . Let GT ,x(y ,) be the Wiener transition density

Crucially, note that the conditioned driftless process is also a linear
SDE. In this setting it is just the Brownian bridge. BB is easy to
simulate, thus an intresting candidate process. We show that is a
valid one, i.e we obtain the likelihood ratio



Consider the following heuristic argument for deriving
dP(T ,x ,y)/dW(T ,x ,y). Consider the decomposition of the laws
P(T ,x ,y) ,W(T ,x ,y) into the marginal distributions at time T and
the diffusion bridge laws conditioned on XT (ala the way we
worked with the h-transform)

Then by a marginal-conditional decomposition we have that for a
path X with X0 = x ,

dP(T ,x)

dW(T ,x)
(X ) 1[XT = y ] =

p0,T (x , y)

G0,T (x , y)

dP(T ,x ,y)

dW(T ,x ,y)
(X ) . (47)

The term on the left-hand side is given by the
Cameron-Martin-Girsanov theorem. By re-arrangement:

dP(T ,x ,y)

dW(T ,x ,y)
(X ) =

G0,T (x , y)

p0,T (x , y)
G (X )

G0,T (x , y)

p0,T (x , y)
exp

{∫ T

0
α(s,Xs)∗dBs −

1

2

∫ T

0
[α∗α](s,Vs)ds

}
,

(48)



Note, however, that we had effectively already obtained this result
in (45). Following the same argument as in (44) (nd again for
simplicity taking d = 1 to maintain correspondence with previous
argument), we have the corresponding decomposition of Wiener
measure

W(T ,x ,y)
T−ε =

Gε(XT−ε, y)

GT (x , y)
W(T−ε,x)

T−ε

and sustituting this into (45) we have

dP(T ,x ,y)
T−ε

dW(T ,x ,y)
T−ε

(X[0,T−ε]) = G (X[0,T−ε])×
GT (x , y)

pT (x , y)

pε(XT−ε, y)

Gε(XT−ε, y)



Note that when ε ≈ 0, by the Euler approximation

pε(XT−ε, y) ≈ 1√
2πε

exp

{
− 1

2ε
(y − XT−ε − α(XT−ε)ε)

2

}
therefore

pε(XT−ε, y)

Gε(XT−ε, y)
→ 1 W(T−ε,x ,y)

T−ε − a.s.



Additional structure on α can lead to further simplifications of
(48). For example, when the diffusion is time-homogenous and of
gradient-type, i.e. there exists a field A such that α(v) = ∇vA(v)
then using integration by parts in the exponent of (48) to eliminate
the stochastic integral, we obtain

dP(T ,x ,y)

dW(T ,x ,y)
(X ) =

G0,T (x , y)

p0,T (x , y)
×

exp

{
A(y)− A(x)− 1

2

∫ T

0

(
||α(Xs)||2 +∇2A(Xs)

)
ds

}
.

(49)



(48) forms the basis for importance a particle approximation of the
law of P(T ,x ,y) using proposals from W(T ,x ,y).

However, the weights are known only up to a normalizing constant
due to the presence of p0,T (x , y).

This poses no serious complication in the application of IS
(including RS), or independence MH. Note that G0,T (x , y) is a
Gaussian density which can be computed and be included explicitly
in the weights, although this is not necessary for the IS.

Therefore, we can cary out the imputation step using an
independence MH algorithm



Practically, we will have to simulate the proposed bridge at a finite
collection of M times in [0,T ] and approximate the integrals in the
weights by sums. This is an instance of the simulation-projection
strategy.

It introduces a bias which is eliminated as M →∞. It is a subtle
and largely unresolved issue how to distribute a fixed
computational effort between M and N, the amount of MC
replications, in order to minimize the MC variance of estimates of
expectations of a class of test functions. However, a qualitative
and asymptotic result is given in [Stramer and Yan, 2007]
according to which one should choose N = O(M2).

(A heuristic: the statistical error is O(1/
√

N) and bias is O(1/M),
thus to match them M =

√
N.)



A MC transition density identity

Re-arranging once more (48) and taking expectations on both
sides we get:

p0,T (u, v) = G0,T (u, v)×

EW(T ,x,y)

[
exp

{∫ T

0
h(s,Vs)∗dBs −

1

2

∫ T

0
[h∗h](s,Vs)ds

}]
(50)

RHS might be simplified further given appropriate structure (e.g σ
invertible, α of gradient form, etc)
It is at this stage where the explicit computation of the Gaussian
density becomes indispensable: if it were unknown we could only
estimate the ratio of the two transition densities, but not
p0,T (u, v).



A note on derivation of bridge density

We derived (50) from (48). This result can be also anticipated
from the general IS framework (36), since the transition density is
the probability of the conditioning event (evidence, partition
function, marginal likelihood)

But it also follows from the basic principles of conditional
expectation. In particular let (Ω,F) be a measurable space, P and
Q be two probability measures on the space with Radon-Nikodym
derivative ξ = dP/dQ, and let G ⊆ F be a sub-σ-algebra. Then,
the derivative dP/dQ restricted to G is E[ξ | G], which follows from
the definition of conditional expectation and the tower property.
To obtain (47) we specify G as the σ-algebra generated by Xt .

Actually, note that it also follows directly from our generic missing
data framework (41)



Historical Development

The expressions (48) and (50) have been derived several times in
the literature with different motives. Remarkably, there is almost
no cross-referencing. To our best knowledge, the expressions
appear for the first time for scalar diffusions in the proof of
Theorem 1 of [Rogers, 1985]. The context of the Theorem is to
establish smoothness of the transition density. Again for scalar
diffusions the expressions appear in the proofs of Lemma 1 of
[Dacunha-Castelle and Florens-Zmirou, 1986]. The context of that
paper is a quantification of the error in parameter estimates
obtained using approximations of the transition density. Since both
papers deal with scalar diffusions, they apply the integration by
parts to get the simplified expression (49).



The [Durham and Gallant, 2002] IS estimator (see later) derived
from different arguments, in the case of constant diffusion
coefficient is a discretizations of (48) and (50). The context here is
MC estimation of diffusion models. Since the authors work in a
time-discretized framework from the beginning, the possibility to
perform integration by parts when possible, is not at all considered.
[Nicolau, 2002] uses the
[Dacunha-Castelle and Florens-Zmirou, 1986] expression for the
transition density as a basis for MC estimation using approximation
of the weights based on M intermediate points.
[Beskos et al., 2006b] used (49) as a starting point for the exact
simulation of diffusions and (50) as a basis for unbiased estimation
of the transition density. Finally, [Delyon and Hu, 2006] state (48)
as Theorem 2 and prove it for mutivariate processes.



Intringuingly, [Äıt-Sahalia, 2002] in his analytic approximations for
1-d time homogeneous diffusions with unit diffusion coefficient,
starts by writing

pT (x , y) = GT (x , y) exp{A(y)− A(x)}ψ(T , y)

and tries to identify ψ. The connection with (49) and (50) are
investigated.



Some results
We apply the methods to the so-called double well potential model:

dXs = −ρ(X 3
s − µXs)ds + σdBs

which has ergodic log-density given by −(2ρ/σ2)(x4/4− µx2/2).
We’ve simulated 1000 data with interobservation times 1, and
(ρ, µ, σ) = (0.1, 2, 0.5)
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MCMC summaries M = 5
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MCMC summaries M = 50
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Posterior densities
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Summary

We have fully addressed likelihood-based inference for
discretey-observed diffusions when the diffusion coefficient is
constant and known.

I Phrased problem as missing data

I Formulated a generic DA

I Probabilistically represented the distribution of missing data

I Developed MC methods for simulating efficiently from the
missing data distribution

We can try to export this methodology to the general case. Before
this, we address the efficiency of the diffusion bridge sampling
methodology.


